About 65,000 results
Open links in new tab
  1. NumPy

    Numerical computing tools NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.

  2. NumPy documentation — NumPy v2.3 Manual

    NumPy documentation # Version: 2.3 Download documentation: Historical versions of documentation Useful links: Installation | Source Repository | Issue Tracker | Q&A Support | Mailing List NumPy is …

  3. NumPy - Installing NumPy

    The only prerequisite for installing NumPy is Python itself. If you don’t have Python yet and want the simplest way to get started, we recommend you use the Anaconda Distribution - it includes Python, …

  4. NumPy - Learn

    Scientific Python Lectures Besides covering NumPy, these lectures offer a broader introduction to the scientific Python ecosystem. NumPy: the absolute basics for beginners NumPy tutorial by Nicolas …

  5. NumPy quickstart — NumPy v2.3 Manual

    The basics # NumPy’s main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of non-negative integers. In NumPy …

  6. NumPy user guide — NumPy v2.3 Manual

    NumPy user guide # This guide is an overview and explains the important features; details are found in NumPy reference.

  7. What is NumPy? — NumPy v2.3 Manual

    What is NumPy? # NumPy is the fundamental package for scientific computing in Python. It is a Python library that provides a multidimensional array object, various derived objects (such as masked arrays …

  8. numpy.polyfit — NumPy v2.3 Manual

    coefficient matrix rcond – value of rcond. For more details, see numpy.linalg.lstsq. Vndarray, shape (deg + 1, deg + 1) or (deg + 1, deg + 1, K) Present only if full == False and cov == True. The covariance …

  9. numpy.where — NumPy v2.3 Manual

    numpy.where # numpy.where(condition, [x, y, ]/) # Return elements chosen from x or y depending on condition.

  10. numpy.matmul — NumPy v2.3 Manual

    numpy.matmul # numpy.matmul(x1, x2, /, out=None, *, casting='same_kind', order='K', dtype=None, subok=True[, signature, axes, axis]) = <ufunc 'matmul'> # Matrix product of two arrays. Parameters: …